
3-View Impostors

Alexandre Hardy�

Academy for Information Technology
University of Johannesburg

Johannes Ventery

Academy for Information Technology
University of Johannesburg

Figure 1: Several views of the Armadillo rendered with a 3-view impostor.

Abstract

In this article we present a new volumetric representation of objects
which can be rendered in real-time on modern GPUs. We show
how existing polygonal objects are transformed into a volumetric
representation involving space carving and height �elds. The per-
formance of the rendering algorithm is determined by the screen
space area of the volume, and is suitable as an impostor algorithm
for objects suf�ciently far from the viewer. These 3-view impostors
are viewable from any angle and only need to be updated if the ob-
ject is animated dynamically. 3-View impostors offer a number of
advantages over competitive techniques, namely: regular sampling
for several views, bounded texture usage, accelerated ray object sur-
face intersection, and more robust handling of thin surfaces.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gen-
eration I.4.0 [Image Processing and Computer Vision]: Image pro-
cessing software

Keywords: Impostors, raycasting, volume rendering, distance
�elds

1 Introduction

Level of detail (LOD) is an important technique that is used to re-
duce the rendering cost of objects where the full detail of the object
will not be visible on the screen. In these situations an alternative
object with lower rendering cost is rendered instead.

Impostors [Forsyth 2001] are an image based level of detail tech-
nique that replaces the rendering of a complex polygonal object
by a single textured quadrilateral, aligned to face the viewer. This
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quadrilateral (known as a billboard) is assumed to be valid for a
certain range of positions dependent both on the position and ori-
entation of the object, as well as that of the viewer.

Although rendering of impostors are fast, the process of creating
the impostor representation is generally expensive. Thus the usable
lifetime of the impostor must be weighed against the expense of
creating the impostor.

However, impostors are seldom valid for a wide range of orien-
tations, they lack depth information and other attributes that can
increase the time that an impostor is valid. Most notably, lighting
information is missing.

Recent research [Risser 2007b] has investigated alternative three di-
mensional representations of an object that can be rendered instead
of the object for a wide range of views. Modern GPUs are able
to render these objects in real-time, and can often render distant
impostors at higher speed than their polygonal counterparts.

These true impostors [Risser 2007b] lack some desirable attributes:

� Guarantees that the object surface is rendered correctly, in-
cluding thin surfaces.

� An ability to deal with relatively complex objects without a
signi�cant decrease in performance.

� Memory usage independent of the complexity of the object.

� Suf�cient detail for almost all views, in particular perpendic-
ular viewing directions.

True impostors are more expensive to create than traditional im-
postors, but can be used for a very wide range of views. However,
views nearly perpendicular to the sampling view lack necessary de-
tail.

In this article we investigate an alternative volumetric representa-
tion of three dimensional polygonal objects that is designed to:

� Provide guarantees or error bounds regarding surface visibil-
ity.

� Provide constant memory usage no matter the complexity of
the object, at the expense of the range of objects that can be
represented.



� Be rendered in real-time on modern GPUs.

� Be created once only, and provide equally valid information
for any viewing angle.

In the next section we discuss related techniques with speci�c ref-
erence to techniques that led to the development of true impostors.
We then discuss the volumetric representations of objects, and use
this representation as a framework for introducing our new model.
Lastly we present performance results and summarize our contribu-
tions.

2 Previous work

We do not attempt to provide a complete discussion of all impostor
representations, but rather focus on the techniques most similar to
our work. See [Jeschke et al. 2005] for a more thorough overview
of impostor algorithms.

Impostors [Forsyth 2001] introduced the idea of rendering a single
screen aligned, textured quadrilateral as a lower detail representa-
tion of an object. Nailboards [Schau�er 1997] added depth infor-
mation to impostors to provide a more accurate rendering of the
impostor. At the time of introduction of nailboards, GPU accelera-
tion of the technique was not feasible.

Relief maps [Policarpo et al. 2005] use height �elds to create extra
surface detail in real-time on modern GPUs, in a similar fashion
to displacement mapping [Lee et al. 2000], which has been imple-
mented on GPUs using a stack of two dimensional polygons [Meyer
and Neyret 1998; Kautz and Seidel 2001]. Policarpo and Oliviera
extend the traditional height �eld approach to render non-height
�eld data [Policarpo and Oliveira 2006], using several height �elds
supplemented by traditional texture data. The algorithm is quite
similar to true impostors [Risser 2007b] except that the algorithm
is designed as a surface detail algorithm rather than an impostor al-
gorithm. However, Policarpo and Oliviera [Policarpo and Oliveira
2006] describe how they have extended their algorithm as an im-
postor algorithm.

Several works have been proposed to accelerate ray height �eld in-
tersection testing on the GPU, such as cone step mapping and re-
laxed cone step mapping [Policarpo and Oliveira 2007]. Baboud
et al. use relief textures and reverse perspective projection to ren-
der three dimensional impostors [Baboud and Décoret 2006] from
a single relief texture.

True impostors [Risser 2007b] extend the idea of Policarpo and
Oliviera to render geometry from a wide variety of views, based
on height �elds obtained by depth peeling (similar to [Shade et al.
1998]). A single quadrilateral is rendered and the fragment shader
performs multiple ray–height�eld intersection tests. The true im-
postors algorithm has been extended [Risser 2007a] to combine in-
formation from a cube map (similar to our approach) to render an
object from any direction. The spherical height �eld cannot repro-
duce the object as accurately as our representation, and the render-
ing algorithm suffers from limitations similar to the true impostors
algorithm. Due to the similarity between true impostors and Poli-
carpo and Oliviera's technique [Policarpo and Oliveira 2006] we
will collectively refer to both techniques as true impostors.

Omni directional relief impostors [And́ujar et al. 2007] select a
number of views from which relief impostors are created (typically
20 relief textures). A selection of these relief impostors are used to
render the impostor. Omni directional relief impostors are able to
render more complex objects than our algorithm, but require many
more textures to represent an object than our representation. In a
certain sense, omni directional relief impostors implement space
carving approach [Kutulakos and Seitz 2000].

Relief Mapped Conical Frusta [Bhagvat et al. 2009] have been used
to render dynamic objects with fewer polygons. The technique is
ef�cient for highly dynamic skeletal objects, but requires far more
geometry to be rendered per object.

Of these techniques the true impostor technique is most similar
to our technique. However, true impostors are not well suited to
views perpendicular to the original sampling view, primarily be-
cause lighting and texturing information will be unavailable for any
surfaces parallel to the view sampling direction. In this case the
expensive procedure of recreating the impostor is required. Cube
maps help to eliminate the view dependency problem, but are less
capable of representing a wide range of objects.

Next we discuss the true imposter algorithm in more detail followed
by 3-view impostors, a multi-angle impostor technique.

2.1 True Impostors

True impostors create a three dimensional representation of an ob-
ject using depth peeling [Everitt 2002]. Depth peeling views an
object from a particular viewpoint and then splits the object into a
number of discrete layers.

Depth peeling on the GPU can achieved with the following algo-
rithm [Everitt 2002]:

1. Initialize layer cull texture to minimum distance.

2. Initialize depth buffer to maximum distance.

3. Set depth test to pass for fragments that are nearer.

4. Render scene to depth buffer. Fragments must pass the depth
test. In addition, fragments are culled if the depth is less than
or equal to the layer cull texture value.

5. Update the layer cull texture to store the maximum of what is
stored in the layer cull texture and the depth buffer.

6. Goto step 4 and repeat until all fragments are culled in step 4.

The layers from depth peeling are stored as height �elds in textures
that will be used to render the true impostors. The original true im-
postor implementation suggests that 4 layers be stored in a single
texture where each depth layer is assigned one of the red, green,
blue or alpha channels in the texture. In our tests we had to aggres-
sively reduce the depth range to be able to achieve a 4 layer rep-
resentation of an object. In general we would expect several more
layers to be necessary and in our experiments objects generally re-
quired between 10 and 16 layers. Since this algorithm is executed
on the GPU we would require a number of GPU programs, one for
each number of expected depth layers in the program. Alternatively
we could support only a single program supporting the maximum
number of expected depth layers, with a larger penalty in perfor-
mance due to the extra texture fetches.

The depth peel layers may need additional processing to ensure that
the representation is valid. We discuss this further in section 3,
where we discuss volumetric representations.

True impostors renders a billboard quadrilateral oriented toward the
viewer. The quadrilateral is large enough to cover the entire object
from the viewer's perspective. For each fragment on the quadrilat-
eral a ray is cast into the volume representing the object. The ray
is tested for intersection with the depth layers generated by depth
peeling, where each layer is represented as a height �eld. At each
iteration a point is classi�ed as positive if the point is above the
height �eld, and negative if it is below the height �eld. If the prod-
uct of this classi�cation for all layers is negative, then the point is
regarded as an intersection.
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Figure 3: Linear steps with thin surfaces (a) 10 steps (b) 50 steps (c) 100 steps (d)250 steps (e) 500 steps.
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Figure 2: Linear stepping can miss surfaces.

True impostors performs a linear search to �nd an initial intersec-
tion point, followed by a binary search to �nd the exact point of
entry into the surface. The initial linear search constrains the ob-
jects that can be represented. Objects with thinner features than
the linear step may be reproduced incorrectly due to missed inter-
sections, resulting in visual anomalies (see �gure 2 for an example
where linear stepping will not �nd the surface intersection). We
have implemented the published algorithm for true impostors and
tested the effect of the number of linear steps for a model with thin
features. The depth-map rendering of the aircraft in �gure 3 needs
over 100 linear steps before the reproduction is acceptable. The lin-
ear step problem is aggravated in this case because we use a cube
for the bounding volume rather than a tight bounding box.

3 Volumetric representations of polygonal
objects

Volumetric representations of objects provide a basis for impostors
that can be reused for any orientation of the object or viewer.

The volumetric representation we consider divides the volume in
which the object resides inton � n � n discrete elements. Each
of the 3 axes is uniformly divided inton segments. Each voxel in
this three dimensional space either contains the object, or does not,
and is marked accordingly. Three dimensional textures are sup-
ported by GPUs, but are normally more expensive to use, and con-
sume signi�cantly more memory. If we desire an impostor with
a screen space resolution of roughly1024� 1024 then we would
typically need a three dimensional texture consuming 1Gb (10243)
of memory or more, whereas a two dimensional texture would only
consume in the order of 1Mb (10242) of memory. It is thus highly
desirable to investigate two dimensional representations of the three
dimensional volume. In a sense we compress the information in the
three dimensional space into several sets of data in two dimensional
space.

One such representation of three dimensional space is depth peel-
ing. Since the objects we deal with are often close to genus 0,
we have the opportunity to create more ef�cient representations of
those objects. In the case of depth peeling we assume that the depth
complexity of an object is relatively simple. We thus select two
axes (de�ning a viewpoint) to serve as the basis for sampling, And
then split the object into a number of depth layers. Each even layer
(starting at layer 0) encodes the start of a range of solid. Each odd
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Figure 4: Example of depth peeling.

layer encodes the end of the solid range of the previous layer. Depth
peeling is a form of run length encoding of the three dimensional
volume. Figure 4(a) shows a “voxel” representation of an object
and �gure 4(b) shows the two depth layers that will be extracted
by depth peeling. In this case the view angle is vertical. We note
the lack of detail regarding the surface near the sides of the �g-
ure. Although the geometry representation is accurate, no texture
or lighting samples have been taken in this area.

The depth peeling algorithm doesn't guarantee sensible ranges. We
normally obtain the maximum depth value for a discarded fragment.
Near the silhouette of the object we may �nd only one polygon that
is rasterized onto a speci�c pixel. In this case we may mistakenly
assume that the depth range extends from the silhouette of the ob-
ject until the maximum depth range. These special cases have to be
dealt with carefully.

If an object is characterized by a bumpy surface, then areas near the
silhouette also typically contain many polygons. In this case the
depth complexity of the silhouette is a lot higher than most of the
rest of the image. The resulting depth complexity results in more
depth layers being produced by depth peeling, with a signi�cant
amount of unused area in each depth layer. Figure 5 illustrates this
problem with the Armadillo model. It is possible to reduce the
number of layers produced by introducing a signi�cant bias term,
but this may require considerable tweaking by the user.

To avoid these limitations and dif�culties, we propose an alternative
representation of the volume using space carving.

4 Space carving and height �elds

Our volume representation combines height �elds with space carv-
ing [Kutulakos and Seitz 2000], as well as a few additional mea-
sures. Space carving is described in the next section with speci�c
reference to our use of the technique. After that, we discuss how
height �elds and distance �elds are used to supplement the space
carving representation.
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Figure 5: (a) Depth complexity of Armadillo model. (b)-(g) First few layers of depthpeeling (of 11 layers)

4.1 Space carving

Space carving [Kutulakos and Seitz 2000] is a technique used to
determine the presence or absence of an object within a particu-
lar voxel by analyzing pictures of the object from known camera
positions. Given a particular voxel, if that voxel is projected into
the camera space for all available pictures, and in every picture the
projected voxel lies in the object on the picture, then that voxel con-
tains the object. If the voxel does not project onto the object in any
single picture, then that voxel does not contain the object. We have
assumed that suf�cient pictures are available to correctly classify
every voxel.

Usually several views are required to obtain a reasonable repre-
sentation of the object. Each additional picture provided for space
carving either leaves the volume representation unaltered, or culls
certain voxels. If there are an insuf�cient number of views, then
many voxels will be incorrectly marked as containing the object.
However, no voxel that is marked as not containing the object is
ever incorrect.

In our algorithm we only use 3 views: One for each of the coordi-
nate axes. In general, space carving applied with 3 views based on
the coordinate axes will yield far from acceptable results. Several
voxels that do not contain the object will be marked as containing
the object. We need additional information to cull these voxels.
Instead of adding additional pictures, we combine height �eld in-
formation with the space carving information.

4.2 Height �elds

For each 3-view we store additional height �eld information. That
is, for each element in the 3-view picture we store the minimum and
maximum depth value of the object along that view direction. This
interval may include empty space. The voxels in the empty space
are culled by one of the other views.

Only the minimum and maximum depth are stored. A voxel con-
tains the object if

min i � pi � max i + �;

wherei is one of the coordinate axesx, y or z andp is the coor-
dinate of the voxel under consideration. Since values are possibly
truncated in conversion from the depth buffer, or during rasteriza-
tion to the depth buffer, we add� to compensate for any such errors
that may occur. It is important that the range given include all parts
of the object that falls into that range. If no object is present from a
given view we simply setmin i > max i + � and then no value of
pi will satisfy the equation.

The technique we use to iterate through the volume generally takes
care of thin surfaces, however there is a particular situation in which
thin surfaces may cause a problem, illustrated in �gure 6(a). In
this case the volume representation has an in�nitely thin portion
created by the rasterization of a single polygon. For most view
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Figure 6: Thin surface raycasting.

Figure 7: The truncated sphere.

directions the thin portion has no in�uence, but for some directions
the surface will not be detected because it is so thin. If models have
this property we can compensate by increasing� to be at least one
voxel width. The resulting surface will have no such thin parts (see
�gure 6(b)).

This representation has de�nite bounded memory consumption. We
store exactly 3 views, and given a speci�c texture resolution we
store exactly 2 values (this will be extended in the next section)
for each texel. In the case of depth peeling, the number of layers
determine the storage requirements.

We must note at this point that our representation is not able to
represent any object. Particular cases like the truncated sphere in
�gure 7 cannot be represented with these 3 views, whereas depth
peeling easily represents the surface in 4 layers (assuming that ras-
terization yields perfect results). Highly complex objects such as
trees with numerous leaves may also not be represented correctly.
Examples of objects not represented correctly are displayed in �g-
ure 8.

Despite this shortcoming, we believe that this representation is still
suitable for use as an impostor. The reasoning behind this assertion
is that the primary failure of our representation is to represent the
interior of surfaces normally visible only from close by or within
the bounding sphere of the object. Impostors are typically used
as a level of detail representation for the object when the object is
relatively far away. In this situation we believe our representation
captures the necessary attributes of the surface.

Although we note the potential for an incorrect surface represen-
tation, we did not notice any errors on the samples tested other
than those examples contrived to produce the error. The objects
we tested this representation on are listed in the results section.
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Figure 8: (a) Two intersecting tori (geometry). (b) The impostor representing thetori. Note the added volume between the tori. (c) The
3-view impostor of a tree. (d) and (e) Close up views of the tree illustrate that the leaves and branches are not completely reproduced.

(a) (b)

Figure 9: Sphere tracing. At each iteration the sampling point
is translated by a distance guaranteed not to intersect the object
until (a) the sampling point is near enough to the surface to be
considered an intersection point, or (b) the ray exits the volume.

4.3 Distance �elds

The volume representation is suf�cient to represent the object at a
desired resolution. It is dif�cult to render the object quickly and
accurately with this representation, however.

In the case of a height �eld representation, true impostors may ren-
der the height �eld incorrectly due to the linear step size. Although
this is not a problem for single height �elds, as soon as multiple
height �elds are introduced the linear step could potentially skip
over features. To avoid this problem we ensure that each step is
a conservative step size. That is, the step taken is guaranteed not
to intersect the object. This is exactly the approach taken by sphere
tracing [Hart 1996] (see �gure 9), which has been used successfully
to render displacement maps on the GPU [Donnelly 2005]. Due to
this restriction we are guaranteed that we will not miss surfaces that
are at least as thick as the resolution of the 3-view images. Once
the iteration is close enough to the surface this restriction will be
discarded to obtain a suitably accurate surface point.

One such conservative estimate is distance �elds [Jones et al. 2006].
For each position in three dimensional space the distance �eld en-
codes the distance to the nearest point on the surface of the object.
In the case of 3-view impostors we do not store information for ev-
ery single voxel. In this case we use the two dimensional distance
�eld calculated from the silhouette of the object. We used the Eu-
clidean distance transform of Shih and Wu [Shih and Wu 2004] to
calculate the two dimensional distance �eld for each of the 3 views
on the CPU. The GPU can also be used to compute the distance
�eld in realtime [Schneider et al. 2009; Cao et al. 2010], although
we have not implemented these algorithms yet. These techniques
can compute distance �elds at up to 300 frames per second for a
1024� 1024image [Cao et al. 2010]. The distance �eld only yields
information for points outside the object. It does not yield any in-
formation for points within the silhouette.

The distance value stored in the two dimensional distance �eld is a
guarantee that if that distance is traveled there will be no intersec-
tion with the object. For a three dimensional distance �eld the safe
distance represents a sphere within which all points are guaranteed
not to be in the object. Since the 3-view representation is a two di-
mensional distance �eld, the safe distance represents a cylinder of
in�nite extent, and radius equal to the safe distance.

Given a direction vectorv , and a two dimensional distance �eld in
thexy plane, the safe distance that can be traveled by a ray is given
by

dp
1 � v2

x v2
y

whered is given by the distance �eld. Similar computations can be
performed for the other coordinate axes.

The cylinder representation of the distance �eld reduces the number
of iterations required to intersect the object at grazing angles.

5 Textures and lighting

At this point we have suf�cient information to determine whether a
point resides at a particular location, but not enough information to
determine how that point should be textured or how lighting applies
to that point.

To address these issues, we store additional information in the 3-
view map. This information records attributes required to texture
the object in each of 6 views along the coordinate axes. We thus
have two textures (front and back) for each axis. 3 views are in-
suf�cient in this case, since the front and back texture of the object
may differ signi�cantly.

For some objects texturing information will be inadequate, most
notably for views where the depth complexity exceeds 2. It may be
acceptable to forgo the texture information in such cases as these
interior surfaces may seldom be visible. If this is not the case, then
we recommend the use of a volume texture format such as octree
textures [Lefebvre et al. 2005]. For mostly convex objects this will
not be a problem, and so it will be useful to encode the texture co-
ordinates in a two dimensional texture instead of a volume texture.

Instead of storing all the surface attributes required to texture the
object, we could instead store the texture coordinates for each of
the 6 textures. These coordinates are then used to lookup texture
attributes in a common texture that is used to render both geome-
try and the impostor. Theseuv-coordinate textures must be con-
structed carefully since seams are sometimes visible on the impos-
tor (see �gure 10). The seams are visible due to interpolation of
theuv-coordinates across auv-coordinate discontinuity in theuv-
coordinate texture map.



Figure 10: Texture coordinate seams are sometimes visible.

In the next section we discuss the method used to determine which
of the 6 textures representing the faces of the bounding box onto
which the object is projected is selected for rendering. Although
the discussion focuses on selecting textures that store texture co-
ordinates, the discussion is equally appropriate to other kinds of
textures such as the normal maps [Fournier 1992] used to facilitate
the lighting computation on the surface. In certain circumstances
the texture coordinate map may have discontinuities, in which case
6 textures storing attributes directly will be preferable.

Given a �nal intersection point, the task remains to select which of
the 6 texture coordinates provided by the 3-views is relevant for that
point.

5.1 Texture Coordinate Selection

During a typical iteration to �nd an intersection point, we would
expect the criteria for each axis to be satis�ed in some arbitrary
order. A point satis�es the criteria for an axis if

min i � pi � max i + �:

Once the criteria for every axis has been satis�ed, then the inter-
section point has been obtained. We reason that the last satis�ed
criteria will describe the surface most appropriate to describe the
texture coordinates.

Texture coordinates are thus selected by computing the minimum
of min jpi � min i j andmin jpi � max i j. If two of these values
are equally close, then we can select one arbitrarily. It is generally
suf�cient to search for the �rst axis that satis�es:

jpi � m i j < �

where � is some suitably small value andm i is eithermax i or
min i . In our case we set� to be slightly larger than the minimum
step size, since that is the size of the last step taken. The nearest
boundarym i uniquely selects one of the 6 stored texture coordi-
nates related to the pointpi .

If further disambiguation is required, then the direction vector of
the ray can be used to help select an appropriate surface. The direc-
tion vector can only reasonably be used to decide whether the front
facing or back facing surface is most appropriate for a particular
view direction. Letvi be the view direction vector component for
axis i . If vi > 0:0 then we select the front surface, otherwise we
select the back surface.

6 3-View Impostor Algorithm

The impostor is rendered by a cube surrounding the object to be
rendered. We have chosen a cube rather than a quadrilateral so that

the initial point for iteration is guaranteed to be within the volume
that we have information for. As a result, we spend less time iterat-
ing toward the surface. The backward facing faces are culled. The
object space coordinates are sent through to the shader programs as
vertex attributes. These attributes are interpolated by the graphics
hardware to provide the correct initial entry-point for the ray.

In the fragment shader we compute the ray from the eye to the frag-
ment and then proceed to iterate through the volume until we exit
the volume or an intersection is found.

The key to the 3-View Impostor algorithm is the combination of in-
formation from 3 different views. In each iteration we query each of
the 3 views to determine the maximum safe step that can be made
without intersecting the object. Since each view encodes a guar-
antee of the maximum step size, we can safely take the maximum
value indicated by the 3-views.

If the step size is less than the resolution of the 3-view textures,
then the step size is set to the resolution of the 3-view textures. In
this way we ensure progress when we get near to the surface. In
addition we know that our minimum feature size is dictated by the
resolution so we cannot miss any such feature.

At certain points in the bounding volume of the object, the point
will fall in the silhouette of all 3 views. In this case no distance �eld
information is available. Cone step mapping or relaxed cone step
mapping [Policarpo and Oliveira 2007] could be used to select a
step distance. We have chosen to implement a simpler mechanism.
We extend the distance �eld representation to include a conservative
cylinder based estimate of the distance to be traveled in the case
where the distance �eld yields no information.

Figure 11 illustrates a cross section of a height �eld, as well as
cylinders that are used in the step size computation. The origin
of the rayr 1 at pointo1 is outside the object silhouette (min i >
max i ), and so the algorithm in section 4.3 is applied to compute the
step size. The maximum safe distance is given by the intersection
between the ray and the cylinder wall. The texture coordinates of
o1 are used to lookup the cylinder radiusdu;v of the cylinderC1

in the two dimensional distance �eld. The safe distance to travel
along the rayr 1 is given by

du;vp
1 � v2

x v2
y

wherev is the unit direction vector of rayr 1 .

For points such aso2 that lie within the silhouette of the object
(min i � max i ), a cylinderC2 is de�ned with radiusr , selected
by the user. All cylinders de�ned for points within the silhouette
of the object have the same radiusr , which will be used during
impostor creation. For each position in the silhouette of the ob-
ject we compute the maximum variation� in the height �eld within
the cylinder radiusr of that position. This value is then stored in
the texture for the view. Two values are stored, one for the closest
height �eld, and one for the furthest height �eld. The cylinder is a
truncated cylinder which has its base at the height �eldhu;v , minus
the variation� at that point. The radius of the cylinder is always
�xed to the radius selected by the user (we usedr = 25 pixels). Al-
though the �xed radius may seem restrictive, the alternative views
often provide better safe distances than the cylinder radius. The
safe distance to travel is given by the minimum of the intersection
between the ray and the base of the cylinder, and the intersection of
the ray and the wall of the cylinder. In �gure 11, rayr 2 will inter-
sect the wall of the cylinder �rst, whereas rayr 3 intersects the base
of the cylinder �rst.

The GLSL code for the ray cylinder intersection test is given in the
appendix.
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Figure 11: Cylinder estimate

7 Technical aspects

Samplers for the textures used must be set up carefully to take into
account the representation of the 3 views. The minimum and max-
imum values must not be linearly interpolated by hardware, since
depth values near the silhouette should not be interpolated. Doing
so will create a false surface. Linear interpolation can be performed
inside the silhouette of the object, but will generally be performed
by the shader, and not by texture hardware.

Likewise texture coordinates must be dealt with carefully. Texture
coordinates can be interpolated by graphics hardware as long as we
provide sensible texture coordinates near the silhouette. We provide
suitable texture coordinates by copying the texture coordinates on
the silhouette edge of the object into the surrounding area. Copying
is performed by iteratively �lling un�lled texels with an adjacent
�lled texel (if such a texel exists). The process is repeated until all
texels are �lled.

If a uv-coordinate discontinuity occurs in the texture coordinate
map, then interpolation of the texture coordinates no longer makes
sense. In such a case volumetric textures should be used, or the
reduced quality produced by not linearly interpolating texture coor-
dinates should be accepted.

In our implementation, the minimum and maximum height �eld
values are stored in thered andgreenchannels respectively. The
two dimensional distance �eld is stored in theblue channel. The
variation for the cylinder base for the front surface is stored in the
blue channel, and the variation for the back surface in thealpha
channel. There is no con�ict between the distance �eld and cylinder
since the distance �eld value is only nonzero formin i > max i + �
and the cylinder values are only nonzero formin i � max i .

The GLSL code for 3-view impostors is provided in the Appendix.

8 Results

In this section we discuss the results of the 3-view impostor algo-
rithm. We have implemented the impostor creation as a precompute
step, but this step could potentially be performed at runtime. Our al-
gorithm is dependent on the number of pixels rendered, or the area
in screen space of the impostor. The impostor performs well when
the screen area is small and can be slower than geometry when the
screen space is large. Impostors are generally used when the object
is suf�ciently far from the viewer and thus the projected screen area
is reduced. We will consider the results for projected area of size
256� 256and lower as indicative of the performance of our algo-
rithm, but we also consider other projected areas for comparison.

We implemented the algorithm in GLSL and collected performance

Figure 12: Visualization of the number of iterations required for
convergence. The scale white to red represents an intersection from
minimum iterations (white) to maximum (red). The scale blue to
black represents no intersection from minimum iterations (blue) to
maximum (black).

Model Resolution 3-View Geom. TI
Stanford bunny 128� 128 2317.5 121.3 —
(69k triangles) 256� 256 1024.2 ” —

512� 512 248.1 ” 155
Armadillo 128� 128 2498.1 24.9 —
(345k triangles) 256� 256 1297.4 ” —

512� 512 296.5 ” 155
F-16 128� 128 1626.7 1502.8 —
(4k triangles) 256� 256 744.7 ” —

512� 512 324.2 ” 155
Horse 128� 128 1288.1 85.4 —
(96k triangles) 256� 256 686.7 ” —

512� 512 279.3 ” 155

Figure 13: Average frame rates (Hz) for various models and res-
olutions. The 3-View column represents frame rates for our 3-View
impostor algorithm. The Geom. column represents framerates for
rendering the geometry, and TI represents the framerates achieved
with the True Impostor algorithm for equivalent quaility and vol-
ume.



Minimum Maximum Distance Field Cylinder (combined)

Figure 15: Channels of 3-view textures

Figure 16: Examples of the 3-view impostor algorithm.

Figure 17: Two views of 100 B-17's rendered with the 3-view imposter algorithm. Thissequence runs at an average of 50 frames per second
at a resolution of800� 800. The equivalent scene rendered with pure geometry runs at an average of 3 frames per second.



Model Mechanism Average Min Max 90%
Stanford DF 21.70 1 231 50

bunny CDF 17.30 1 224 43
Cylindrical 13.38 1 204 29

Armadillo DF 17.80 1 254 38
CDF 13.37 1 193 31
Cylindrical 11.15 1 162 23

F-16 DF 8.41 1 244 14
CDF 5.65 1 167 10
Cylindrical 5.54 1 167 10

Horse DF 12.05 1 187 23
CDF 8.42 1 151 16
Cylindrical 7.78 1 143 14

Figure 14: Iterations for various models. DF uses the distance
�eld with a spherical safety radius. CDF uses the distance �eld
modeled with a cylindrical safety radius. Cylindrical refers to CDF
as well as the cylinder computation for points within the silhou-
ette of the object. The minimum, maximum and 90th percentile are
shown.

results on an Nvidia GeForce GTX 260 graphics card. The results
are displayed in �gure 13. The results indicate that for distant ob-
jects the algorithm performs very well. We also note that the de-
crease in performance is not always quadratic when the resolution
is doubled. For texturing we have used 6 textures that represent the
surface attributes for each of the 3 view directions (front and back).
We compared the performance of geometry rendering to the 3-view
impostor algorithm, and found that the impostor algorithm outper-
formed geometry rendering for the listed resolutions (except for the
F-16, which has few triangles). The performance of rendering the
geometry was constant for the selected resolutions, indicating that
the hardware was not �ll-rate limited.

We have performed a software simulation of the shader to deter-
mine the number of iterations required to render objects with the
techniques listed. The results are listed in �gure 14. True impos-
tors selected 10 linear steps followed by 8 binary steps for a total
of 18 iterations. In general we found it necessary to increase the
number of linear steps to 250 to achieve the same quality of repro-
duction as our algorithm. The extra iterations are needed where an
object silhouette has thin parts. The performance of true impostors
is directly related to screen space, since no early exit criteria is spec-
i�ed. Our algorithm performs well on average in comparison. The
worst case often involves several steps, but 90% of the fragments
rendered have a reasonable number of iterations. The additional
computation for cylinder intersections reduces the number of itera-
tions by a reasonable amount. Figure 12 visualizes the number of
iterations required to render the horse object. We note that the most
iterations are normally required at silhouettes or recessed parts of
the object.

We illustrate several examples of the 3-view impostors in �gure 1
and �gure 16. Figure 15 illustrates one of the textures produced
for the Stanford Bunny. Figure 17 illustrates 100 B-17 objects (ob-
tained from www.�ightgear.org) rendered with our 3 view imposter
algorithm. Despite the relatively thin surfaces, our algorithm man-
ages to render the sequence at an average of 50 frames per second.
The corresponding geometry renders at an average of 3 frames per
second.

9 Conclusion

We have presented a new distance �eld based impostor that is suit-
able for rendering objects from any view.

The new approach is relatively ef�cient and robust. We have also
discussed how existing texture and modeling resources may be used
to enhance the detail of the impostor.

Acknowledgements

The Stanford Bunny is courtesy of Greg Turk [Turk and Levoy
1994]. The Armadillo model is courtesy of Venkat Krishnamurthy
[Krishnamurthy and Levoy 1996]. The horse model is courtesy of
the Georgia Insititute of Technology1. The B-17 model is dis-
tributed by the Flightgear project2. The F-16 mode is distributed
with Open Inventor3.

References
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Appendix

GLSL code for cylinder intersection test

bool between(float x, float y, float z) {
return (x<=y) && (y<=z+bias);

}

float cyl_dist(float alt, float dz, float idz,
vec4 sample) {

float dist;
if (between(sample.r, alt, sample.g))

return 0.0;
if (alt <= sample.r) dist = sample.r - alt;
else dist = alt - sample.g;
dist = dist - sample.a - bias;
dz = max(abs(dz), eps);
idz = max(idz, eps);
dist = max(dist, 0.0) / dz;
if (cylinder < dist * idz)

return cylinder / idz;
else return dist;

}

GLSL code for the 3-view iteration

pos anddir are provided at the beginning of iteration.

void main(void) {
int i;
vec4 front, side, top, invdir, dist;
float step = 0.0, minstep = 1.0/256.0;
float tdist = 0.0;
bool found = false, b1, b2, b3;

dir = normalize(dir);
invdir = 1.0-dir * dir;
invdir.xyz = sqrt(invdir.xyz);

for (i=0; i<256; i++) {
front = texture2D(fronttex, pos.xy);
side = texture2D(sidetex, pos.zy);
top = texture2D(toptex, pos.xz);

b1 = between(front.r, pos.z, front.g);
b2 = between(side.r, pos.x, side.g);
b3 = between(top.r, pos.y, top.g);
found = (b1 && b2 && b3) || found;
if (found) break;

dist.x = side.b / max(invdir.x, eps);
dist.y = top.b / max(invdir.y, eps);
dist.z = front.b / max(invdir.z, eps);
if (side.r <= side.g)

dist.x = cyl_dist(pos.x, dir.x,
invdir.x, side);

if (top.r <= top.g)
dist.y = cyl_dist(pos.y, dir.y,

invdir.y, top);
if (front.r <= front.g)

dist.z = cyl_dist(pos.z, dir.z,
invdir.z, front);

step = max(max(dist.x, dist.y), dist.z);
if (step < minstep) step = minstep;
pos += dir * step; tdist += step;
if (tdist > 1.8) break;

}
gl_FragDepth = gl_FragCoord.z +

tdist * depthstep;
if (!found) discard;
//found surface

}


