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Abstract

We describe a client-side sharding system which fol-

lows the naı̈ve approach of hashing keys in documents

to determine the shard that a document belongs to. Our

database clients support a limited set of (NoSQL like)

operations. We extend this simple approach by describ-

ing a scheme for rebalancing data between shards when

new shards are added. The rebalancer is a client of each

shard similar to the other clients in the system. We

describe the algorithms required to present a consistent

view to clients of the sharded database system during

rebalancing. These algorithms permit a limited set of

database operations to be executed in a lock-free fashion.

Our clients do not rely on any notion of logical or global

clocks to achieve a consistent partial event ordering.

1 Introduction

Sharding is a simple and naı̈ve approach to scale out

database capacity and performance. Although there are

several databases that support sharding and hide the de-

tails from the client, it is useful to be able to implement a

sharding system on the client side, for the following rea-

sons (some of which are already provided by available

databases):

• We reduce the complexity of the server.

• We can avoid a bottle neck of requiring all clients to

communicate with a coordinating master.

• We have the potential to introduce heterogeneous

sharded systems, which may be an attractive propo-

sition for migrating data from one database system

to another.

Sharding based on a hash of key fields of a document

provides high performance and exceptional simplicity.

We extend this approach to an environment where shards

can be added dynamically with limited disruption, and

where the clients continue to operate in spite of rebal-

ancing of data on the shards.

2 Related Work

Since the advent of the distributed and cloud computing

paradigms; scalable, distributed and fault tolerant data

stores have been at the forefront of the database research

community. A significant amount of research work has

been done on designing scalable database systems for

various types of workloads [2]. Various schemes of dis-

tributing and managing the data have been proposed for

key-value stores, document stores and graph based data

stores.

As a prominent feature of various distributed data

stores, hash-based schemes have been widely used to

distribute the data evenly among multiple nodes in the

data cluster. [12] provides an efficient scheme for storing

multi-dimensional data in distributed hash tables. Node

join and leave operations are proposed to handle system

churn and to maintain a certain load factor at all times.

Such data distribution schemes can be thought of as com-

plimentary to the data management algorithms proposed

in this paper. Although we use a simple hashing scheme

in our approach, various other data distribution schemes

can be plugged into our algorithm and act as the data dis-

tribution layer. [17] uses a hierarchical distributed hash

technique to store and efficiently query spatio-temporal

data using a graph representation. However, such ap-

proaches are rather specialized in nature and focus on a

particular data store platform.

Various database platforms store data in a key-value

pair format. Such key-value based database platforms

and data management tools have been used commer-

cially by various organizations. Google, for example,

uses Spanner [9] and MegaStore [3] as its data distribu-

tion and retrieval platform. Spanner supports distributed

transactions and provides a globally consistent notion of

time. However, to achieve this, it uses specialized hard-
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ware by equipping database servers with GPS and atomic

clocks for time synchronization. On the other hand, our

client-side data management platform can be deployed

on commodity hardware thus eliminating the cost of ex-

pensive hardware. We simulate global time based on the

ordering among various operations and thus maintain a

consistent view that gets offered to multiple, distributed

clients. Amazon uses Dynamo [11] as the platform to

power its e-commerce applications. Dynamo makes use

of well-known distributed database management con-

structs (such as data partitioning based on geographic

locations, object versioning to attain consistency) to pro-

vide a consistent view to the application. PNUTS [8]

is a geographically distributed and centrally managed

database system that powers Yahoo’s massive web ap-

plication suite. Data is either hashed or ordered for quick

retrieval. PNUTS makes use of a message bus to dis-

tribute operational data to the database servers. PNUTS

offers consistency guarantees on a per-record basis that

are transactional in nature but not completely serializ-

able. In [10], authors propose an extension to the basic

key-value paradigm by allowing applications to combine

multiple keys to form key-groups. The transactional se-

mantics are provided on a per-keygroup basis. This ap-

proach uses a traditional key-value store as the underly-

ing platform. However, a single node in the cluster gains

ownership of all the keys in a key group. This makes the

scheme susceptible to failures.

There are various open source distributed database so-

lutions available which offer varied paradigms (SQL,

NoSQL, key-value, document store, object store) of data

store [6]. MongoDB [7, 4] is an open-source docu-

ment database which supports data replication for high-

availability. Data distribution is supported in the form

of shards. MongoDB shards (divides) data among multi-

ple machines based on range or based on the hash value

of the shard key. The data is automatically moved be-

tween shards based on load, access pattern and data

churn caused by inserts, updates and deletes. How-

ever, MongoDB sharding is done entirely on the server

side. Our approach offloads that responsibility to the

client and allows servers to only worry about data repli-

cation. Cassandra [15] supports partitioning and repli-

cation. Failure detection and recovery are done auto-

matically by the cluster. However, Cassandra has a

weaker concurrency model wherein replicas are updated

asynchronously and replication factor is maintained by a

read-repair approach.

The commodity storage solutions offered by various

vendors have been leveraged to implement databases.

In [5], authors explain one such approach. Here, a

database service is implemented on top of Amazon’s S3

service. Read, write, and commit protocols are presented

which together constitute the database service. Such ap-

proaches can be considered as complimentary to the ap-

proach presented in this paper. Our data management

and query algorithms can run on top a myriad of database

services as long as they offer some basic database func-

tionalities.

Significant work is also being done to extend the func-

tionality of different languages so that it becomes eas-

ier to write code that deals with queries on distributed

databases. For example, Java can be extended with dis-

tributed transactional constructs [14] so that it is easier to

write queries on distributed datastore and access them us-

ing JDBC and MPI. Although such approaches do make

writing correct distributed queries possible, our approach

addresses the issue of correctness by defining algorithms

so that the ordering of the operations is preserved even in

a concurrent context.

Our approach differs from these solutions in a fun-

damental manner. These industry techniques push the

data management and consistency logic to the servers

whereas we put that logic in the clients. This allows us

to keep the servers “dumb” and make use of commod-

ity hardware to run our platform. Our approach does

not require any messaging platform, except to establish

some global state. No communication is required be-

tween clients to perform the standard set of database op-

erations that our client library supports. This also in-

creases the scalability and operability of the system as

new clients can be launched without any extra setup re-

quired. Our approach also aims to be generic in nature

and can be applied to various types of databases. Finally,

we rely on the underlying database to provide ordering

of operations so that the clients do not require any notion

of a shared clock [16].

3 Overview

We make a number of assumptions in our system, which

is consistent with our particular use of the database sys-

tem. The algorithm is designed around these assump-

tions, and is thus not a completely general algorithm, but

rather a useful subset of the typical operations executed

against a database.

We assume that the only atomic operations available

to clients are:

• Add (insert) a document into a collection, with no-

tification of conflicting primary keys.

• Remove a named (by primary key) document from

a collection.

• Update the entire contents of a named document

(partial updates, and increment operations are not

supported).
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• Get (retrieve) a named document from a collection.

By atomic, we mean that

• the state of a document is well defined during any

of these operations, corresponding to the state either

before or after the operation.

• on completion of the concurrent execution of these

operations on a document, the final state of the doc-

ument coincides with the state achieved by serially

executing some permutation of the concurrent oper-

ations.

We do not require chronological ordering of operations,

except from the perspective of the client. That is, if the

database client executes operations in a serial fashion,

then the chronological ordering of those operations must

be preserved. However if a database client executes a

number of operations concurrently, then we do not guar-

antee any chronological ordering of the operations.

We also support queries over document collections

where we guarantee:

• If a document has not been deleted, it will be re-

turned as part of the results of the query (assuming

it matches the query criteria).

• A document will not occur twice in the results of a

query, if that document has not been updated during

the query.

• Only queries that do not mutate documents are per-

mitted. For mutations, the individual atomic opera-

tions listed above should be used.

Our priority in this case is not to miss any data, but allow

some data to be duplicated in a result set (although in

most cases we avoid these duplicates).

Note that the algorithm is lock-free, but this does not

mean that the shards do not use locks to implement the

atomic operations. Instead, it means that the client does

not have to perform any locking to guarantee consistency

of the data.

The algorithm we present has more overhead than tra-

ditional sharding, and thus we want to limit the time dur-

ing which this algorithm is applied. To do so, each client

maintains state which determines when this algorithm is

going to be executed.

In the next section we describe how the database

clients agree on the state of the system, and how tran-

sitions from one state to another is effected, followed by

a discussion of our algorithms for lock free database op-

erations during the rebalancing phase.

4 State Transitions

When a new shard is added, the system enters the re-

balancing phase. The naı̈ve sharding algorithm does not

guarantee consistent results when we enter the rebalanc-

ing phase. For example, a sharding system based on the

hash of the primary key of a document, will compute a

new shard for every document. Assume that the rebal-

ancer has not moved these documents yet. If a database

client tries to retrieve a known document using the new

algorithm, it may end up fetching the document from the

new shard rather than the shard where the document is

actually located, and will thus incorrectly infer that the

document no longer exists.

We thus need a special algorithm to execute during

rebalancing to ensure consistency. However, it is imper-

ative that all database clients execute the same algorithm

at any point in time to prevent mutations that can result

in an inconsistent state. It is not acceptable for one client

to assume there are 2 shards, while another client works

with 4 shards, where 2 shards are common between the

database clients.

To ensure agreement between clients, we store the cur-

rent state in an independent metadata store. This meta-

data store is extremely lightweight, and is consulted in-

frequently. The metadata stored for the current state is:

• The number of shards before rebalancing was

started (if rebalancing).

• The number of shards currently available for use.

• The current version of the database system – a

monotonically increasing number which records the

number of times the number of shards has changed.

• The state of all database clients (there is only one

such state since all clients must agree on that state).

• Related to the above field: whether rebalancing is in

progress.

Our state transition diagram is illustrated in figure 1.

The states are as follows:

• normal – The normal naı̈ve sharding algorithm

(high performance) is executed in this state.

• enter rebalance – A barrier state: join the en-

ter rebalance barrier. Database clients are notified

of this state change through a notification mecha-

nism, after the new database shards are confirmed to

be available. No new operations may be performed

until all known database clients have entered the

barrier. The last database client to enter this barrier

will trigger the transition to the rebalancing state.

All clients will use the new database version num-

ber at this point.
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normal

enter rebalance

rebalancing

enter cleanup

cleanup

leave rebalance

Figure 1: State transition diagram for database clients.

• rebalancing – The rebalancer process begins to ex-

ecute in this state. When the rebalancer process

has finished moving documents around, it will no-

tify database clients of the transition to the en-

ter cleanup state. While in the rebalancing state,

clients will execute a slower algorithm that ensures

that the data in the database system remains consis-

tent.

• enter cleanup – A barrier state: join the en-

ter cleanup barrier. The last database client to join

this barrier will trigger the transition to the cleanup

state. No database operations are permitted in this

state, the operations are queued until the database

client enters a state where operations can be per-

formed.

• cleanup – The rebalancer removes any remain-

ing documents which are not necessary for the

naı̈ve sharding algorithm. There should be very

few documents left which satisfy this criteria.

Database clients are not permitted to perform op-

erations and therefore queue any database requests.

When the rebalancer has finished the cleanup,

it notifies database clients of the change to the

leave rebalance state.

• leave rebalance – A barrier state: join the

leave rebalance barrier. The last database client to

join this barrier will trigger the transition to the nor-

mal state.

Barriers are used as the synchronization mechanism

between database clients, to ensure that the same algo-

rithm is executed by all clients. Before entering a bar-

rier, the database client waits for all existing operations

State Algorithm

normal naı̈ve

enter rebalance none

rebalancing consistent

enter cleanup none

cleanup none

leave rebalance none

Table 1: Algorithms executed in each of the states.

to complete, and subsequently joins the barrier. Once

all known database clients have joined the barrier, each

client can then proceed to process any queued database

requests. The query operation is handled somewhat dif-

ferently and is discussed in a later section. We have

used ZooKeeper [13] to implement the barrier mecha-

nism, where the number of participants in the barrier

is determined by a strictly increasing counter stored in

ZooKeeper.

The algorithm executed in each one of these states is

listed in table 1.

Next we introduce some notation for describing the

consistent algorithm applied during rebalancing, and fol-

low that with a collection of algorithms for common

database operations which provide consistent results dur-

ing rebalancing.

5 Notation

For simplicity in the following discussions, we ignore

the possibility of multiple databases per shard, and mul-

tiple collections of documents per shard. Instead, we

presume each shard is a single collection of documents

which all share the same notion of a primary key. The al-

gorithms are easily extended to collections and databases

by considering each collection as a shard in the algo-

rithms which follow. The notation we will use is:

• d – a document with a number of attributes.

• dp – The primary key of the document d.

• Si – The set of all documents on shard i. Each pri-

mary key may occur no more than once in each

shard.

• Si(k1 = v1,k2 = v2, . . . ,kn = vn) – The set of doc-

uments in shard i with attributes (k1,k2, . . . ,kn) =
(v1,v2, . . . ,vn). Note that d ∈ Si(k1 = v1,k2 =
v2, . . .)⇒ d ∈ Si. Although we focus on equality,

this notation can be extended to include arbitrary

criteria that can be evaluated on a single document.

• d ∈ Si – True if the primary key of d is already

present in a document in Si. False otherwise.
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• Si← Si+{d} – Insert d into the shard Si. The result

of this action is DUPLICATE iff d ∈ Si, or SUC-

CESS otherwise. This is an atomic operation.

• Si← Si−{d} – Delete the document with the same

primary key as d from the shard Si. The result of

this action is NOTFOUND iff d 6∈ Si, or SUCCESS

otherwise. This is an atomic operation.

• Si(k1 = v1,k2 = v2, . . . ,kn = vn) ← d – Up-

date the documents in shard i with attributes

(k1,k2, . . . ,kn) = (v1,v2, . . . ,vn) to have attributes

as given by d. The attributes specified by

(k1,k2, . . . ,kn) must include the primary key of the

document, and the value of the primary key must

be dp. Each update is an atomic operation. The re-

sult of this action is NOTFOUND iff d 6∈ Si(k1 =
v1,k2 = v2, . . . ,kn = vn), or SUCCESS otherwise.

• We define the upsert operation as: Si ← Si∪{d}

where

Si∪d =

{

Si + {d}, d 6∈ Si

(Si−{d})+ {d}, d ∈ Si

This is an atomic operation. The upsert operation

inserts the document into the shard if it is not al-

ready present, or updates the document otherwise.

• We define the parameterized upsert operation as:

Si← Si∪
q
{d} where

Si∪
q

d =

{

Si + {d}, d 6∈ Si(q)
(Si−{d})+ {d}, d ∈ Si(q)

and q is a tuple of the form (k1 = v1,k2 =
v2, . . . ,kn = vn). This is an atomic operation.

• result = action – Perform the specified action and

store the result.

Every insertion or update sets the document version to

the new version vnew.

6 Algorithms

In this section, we describe the individual operations

supported by the database client, and how they are im-

plemented to ensure consistency during the rebalancing

phase.

The key issue to address is that documents may not

map to the same shard after the number of shards have

been increased. Thus any database operation may in fact

extend across two shards: the shard the document origi-

nally resided on (the old shard) and the shard on which

we expect the document to reside after rebalancing com-

pletes (the new shard). If the old shard is identical to

the new shard for a given document, then no rebalancing

is required (other than some minor updates mentioned

later). In this case, the conventional naı̈ve sharding algo-

rithm can be executed. Thus we only consider the case

where the old shard and the new shard differ.

It will be helpful to establish some invariants or rules

to reduce the probability of mistakes in the algorithm.

The invariants we have selected during rebalancing are

as follows:

• Only the rebalancer may modify or remove docu-

ments from the old shard.

• Any database operations may only mutate docu-

ments on the new shard for that document.

• Any document migration must be performed in such

a way that at any point in time the document:

– Exists on the old shard, or

– Exists on the new shard

Each document has two additional attributes:

• version: A number identifying the generation of the

document, which is tied to the number of times the

shard count has changed. All documents before re-

balancing have a version associated with the previ-

ous number of shards, which we call the old ver-

sion. Documents which have been moved to the

new shard are tagged with a different version identi-

fier, which we call the new version. Every mutation

on the new shard must change the version attribute

to the new version. In simple environments, the ver-

sion number may simply be the number of shards,

although this may cause problems if the number of

shards are reduced.

• tombstone: As we will see later, deleting a docu-

ment is a non-trivial matter, and thus we need a way

to mark documents as being deleted. The tombstone

attribute indicates whether the document has been

deleted.

We now discuss each of the supported operations

along with associated pitfalls.

6.1 Add

A document can only be added if no other document with

the primary key already exists. Since an add operation is

a mutation, we only apply mutations on the new shard

for this document. To insert a new document we perform

an atomic operation which:

• Inserts a new document on the new shard, unless a

tombstone for this document exists.
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Algorithm 1 Add

Require: A document d, old shard Sold and new shard

Snew, Sold 6= Snew

procedure ADD(Sold , Snew, d)

if d ∈ Snew then

// Conditionally update the document

r = Snew(dp, (d) = True)← d

return r

else

if d ∈ Sold then

return DUPLICATE

else

// Perform an upsert

r = Snew← Snew ∪
(d)=True

{d}

return r

end if

end if

end procedure

Algorithm 2 Update

Require: A document d, old shard Sold and new shard

Snew, Sold 6= Snew

procedure UPDATE(Sold , Snew, d)

// Check if the document exists on the old shard

if d ∈ Sold then

r = Snew← Snew ∪
(d)=False

{d}

else

r = Snew(dp, (d) = False)← d

end if

return r

end procedure

• If a tombstone for this document exists, then update

the tombstone to be this document (and no longer a

tombstone).

We rely on the upsert operation on the shard to per-

form this action, and we also rely on a unique constraint

on the primary key. If the unique constraint is violated,

then the database client will be informed that the doc-

ument already exists. In addition to this simplistic sce-

nario, we need to take into account that the document

may already exist on the old shard. So before proceeding

with the above algorithm, we first determine if the doc-

ument exists on the old shard. If so, then the add fails

due to a duplicate key error. The complete algorithm is

provided in algorithm 1.

Note that we only provide the algorithm for Sold 6=
Snew. For Sold = Snew we execute the standard naı̈ve

sharding algorithm.

Algorithm 3 Delete

Require: A document d, old shard Sold and new shard

Snew, Sold 6= Snew

procedure DELETE(Sold, Snew, d)

// Check if the document exists on the old shard

if d ∈ Sold then

r = Snew← Snew ∪
(d)=False

{ (d)}

else

r = Snew(dp)← (d)
end if

return r

end procedure

6.2 Update

We utilize upsert and update operations on individual

shards to perform a cross-shard update. A document can

be updated only if it already exists on some shard. The

update operation mutates the document. So to maintain

the invariant, we only apply updates to the new shard for

this document. The update operation is performed in the

following manner:

• If the document is found on the old shard, then in-

sert the updated document to the new shard (or up-

date the document on the new shard if it is already

present).

• Otherwise, if the document is found on the new

shard, then update the document on the new shard.

No insert is permitted if the document is not found

on the old shard.

In both cases we add conditions that documents may only

be updated if the document is not a tombstone, since

deleted documents cannot be updated.

We rely on the fact that parameterized upsert to the

new shard will fail if the document to be updated is a

tombstone. Similarly, the update operation on the new

shard will fail if the document does not already exist on

the new shard. The complete algorithm is provided in

algorithm 2.

6.3 Delete

A document can only be deleted if it exists on some

shard. Since only the rebalancer can remove documents

from a shard, we maintain this invariant by not physically

deleting the documents during the delete operation. In-

stead, we only mark a document when it is deleted. The

marking is done by inserting an additional field called

tombstone into the document and setting it to True to in-

dicate a valid tombstone. The rebalancer then takes care

of physically deleting all the tombstones when it is done
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Algorithm 4 Get

Require: A document primary key dp, old shard Sold

and new shard Snew, Sold 6= Snew

procedure GETSHARD(Si, dp)

if dp ∈ Si then

if Si(dp) is (d) then

return DELETED

else

return Si(dp)

end if

else

return NOTFOUND

end if

end procedure

procedure GET(Sold , Snew, dp)

r = GETSHARD(Snew, dp)

if r is DELETED then

return NOTFOUND

end if

if r is not NOTFOUND then

return r

end if

r = GETSHARD(Sold , dp)

if r is DELETED then

return NOTFOUND

end if

if r is not NOTFOUND then

return r

end if

r = GETSHARD(Snew, dp)

if r is DELETED then

return NOTFOUND

end if

return r

end procedure

moving the documents around. The delete operation is

implemented as follows:

• If the document is found on the old shard, then

insert a tombstone for this document on the new

shard.

• Otherwise, if the document is found on the new

shard, then update the document on the new shard

and set tombstone to True.

The addition of a tombstone document is actually per-

formed using an upsert operation. For the upsert we sim-

ply modify the existing document and insert a tombstone

field in it and set it to value True. If the document al-

ready contains a tombstone field, then we simply set its

value to True. The complete algorithm is provided in

algorithm 3. Please note that indicates the tombston-

Algorithm 5 Rebalance

procedure COMPUTESHARD(d, nnew)

// This process will calculate the shard where the

// document should be stored

// This can be done in a variety of ways

// We chose to use a hash and mod approach

// Here, h indicates the hash function

j = (h(dp) mod nnew)+ 1

return S j

end procedure

procedure REBALANCE(vold , vnew, nold , nnew)

for all Si ∈ S do

for all d ∈ Si(version = vold) do

Snew← COMPUTESHARD(d,nnew)
if Si = Snew then

Snew(dp)v
← vnew

else

// Ignore any conflicts

// A conflict means the document has

// already been rebalanced

Snew← Snew + {d}
end if

end for

end for

Q← all active queries

Q′←Q

while Q′∩Q 6= /0 do

Q′← all active queries

end while

for all Si ∈ S do

Si← Si− Si(version = vold)
Si← Si− Si( = True)

end for

end procedure

ing operation where we insert a tombstone field into the

document.

6.4 Get

A get operation does a lookup for the document based on

a primary key. Since the rebalancer might be rebalancing

the document that we are trying to lookup, the get oper-

ation has to do multiple lookups before declaring that a

document does not exist. The lookup has to be done in

following sequence to make sure if a document exists in

the sharded database. First check if the document exists

on new shard, then check if the document exists on old

shard and then finally check if the document exists on

the new shard again. If these three lookups fail to pro-

duce the required document, then we can declare that the

document does not exist. The complete algorithm is pro-

vided in algorithm 4.
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6.5 Rebalance

The rebalance operation is executed when a new shard

is added to the system. When a new shard is added, the

existing data that is residing on the old shards needs to be

moved to appropriate shards based on the new number of

shards in the system. For each shard in the system, the

rebalancer basically reads all the documents from that

shard that have the old version number. Then for each

such document, it finds the new shard location for this

document and then puts the document in its new location.

After all the required documents from all the shards are

moved to their appropriate locations, all the documents

belonging to the older version are removed. Also, all the

documents that have a valid tombstone flag are removed.

If the rebalancer finds any document that does not need

to be removed, then the rebalancer simply changes the

version attribute of that document to the new version.

The complete algorithm is provided in algorithm 5.

There is one peculiarity we need to mention. Since

queries are often implemented with cursors, it is possible

that cursors iterating through the shards may miss a re-

balance operation and omit a document. The rebalancer

must thus wait for all existing queries to terminate before

removing the old version of documents.

6.6 Query

The query operation needs to execute the query on all the

shards in the system and then combine (merge) the re-

sults obtained from individual shards to produce the final

result. Since the rebalance operation might be moving

documents around while query is performed, the merg-

ing of results needs to be performed by taking this factor

into consideration.

The merge process works as follows. First, the query

is executed on individual shards and the results of the

operation are stored in individual queues. Then, while

there are still documents left in some queue, we first read

the top document from each shard queue. Then we find

the minimum document(s) based on the value of the pri-

mary key. Then among this set of minimum documents

we find the document that has the highest version num-

ber. If this document does not have a valid tombstone

flag, then this document is added to the final result set.

Then from all individual shard result queues, we delete

the document(s) whose primary key matches with that of

the document that was just added to the final result queue.

The complete algorithm is provided in algorithm 6.

7 Validation

We first consider every sharding mutation operation. All

our mutation operations consist of exactly two database

Algorithm 6 Query

procedure ADDSORTCRITERIA(q,m)

// Add the sort key m to the existing sort keys

// in the query q

// Assume query has sort keys {k1,k2, . . . ,kn}
// in that order

// Then the new sort key order will be

// {k1,k2, . . . ,kn,m}
r = {EXISTINGSORTKEYS(q)+m}

return r

end procedure

procedure QUERY(q)

// SR stores the query results obtained from indi-

vidual shards

SR←{}
// R stores the final result set of the query

R←{}
q′← ADDSORTCRITERIA(q,dp)
for all Si ∈ S do

SR← SR+ Si(q
′)

end for

while ∑i |SRi|> 0 do

d←mindp
{⊤(SRi)}

d←maxdv
{⊤(SRi)|⊤(SRi p) = dp}

if d is not (d) then

R← R+ d

end if

for all SRi ∈ SR do

SRi← SRi−{d}
end for

end while

return R

end procedure

calls:

• A query (fetch of a single document) from the old

shard.

• An atomic single shard mutation operation on the

new shard.

Since all single shard mutations on a shard are atomic,

all combinations of mutations will be serialized in some

way. So we are guaranteed that single shard mutation

operations cannot affect the correctness of the algorithm

in the sense that individual mutations cannot interleave

in such a way that the outcome of any sharding mutation

is unpredictable. All that remains is to validate that the

algorithms do indeed perform the actions we require.

7.1 Fault Tolerance

The rebalancer algorithm ensures that even if the rebal-

ancing process fails at any point in its execution, it leaves
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the database in a consistent state. The rebalancer can be

resumed on any node at any time in the future with no

special provisions. Since the rebalancer never violates

the invariants listed in section 6, all the other algorithms

will function consistently and correctly in the presence

of a rebalancer failure.

7.2 Testing Framework

Reasoning about the algorithms helps to validate their

correctness, but it is desirable to have some stronger

guarantee such as a mathematical proof of correctness.

We have favored a different approach. To validate the al-

gorithms, we implemented a simulator which is able to

determine the order in which atomic actions on a shard

occur. We generate a number of test scenarios for ev-

ery permutation of interactions between two concurrent

requests. These tests are executed, and the final state af-

ter the operations have completed is evaluated to see that

the outcome is consistent, and that some ordering of the

operations has been applied. The same algorithm can be

applied to more than two operations, but the time con-

sumed by these tests begins to outweigh the gains at more

than three simultaneous operations. Our expectation is

that three operations will behave correctly if two opera-

tions behave correctly, since any two operations can be

ordered, with the third applied after that (since we have

verified that mutation operations serialize).

We have executed our test framework to convince our-

selves that the implementation is correct. We perform

each test for a number of scenarios:

• Document does not exist on the old shard.

• Document does exist on the old shard.

• Tombstone for the document exists on the new

shard.

• Document has been rebalanced and exists on the old

shard and new shard.

• Document has been rebalanced and exists on only

the new shard.

The test framework confirms the correctness of our algo-

rithms.

8 Results

We computed a number of tests to determine the over-

head, in real terms, of the algorithms proposed in this

paper. These tests were performed on a cluster with 3

shards, with three replicas in each shard. The 9 compute

nodes hosting the database were all running on virtual

machines on a cloud service, so a possibility exists that

Operation Normal Rebalancing %

Add 3.88 3.93 1%

Add (duplicate) 3.66 3.90 6%

Delete 7.54 7.55 0%

Delete (missing) 7.76 8.49 9%

Get 6.93 6.92 0%

Get (missing) 7.83 7.75 0%

Query1 0.16 0.14 0%

Query2 0.07 0.07 0%

Update 7.60 7.78 2%

Update (missing) 7.96 8.22 3%

Table 2: Overhead of executing operations during rebal-

ancing.

Operation Normal Rebalancing %

Add 2.74 2.86 4%

Add (duplicate) 2.76 2.82 2%

Delete 5.43 5.49 1%

Delete (missing) 6.51 6.70 3%

Get 5.48 5.42 0%

Get (missing) 6.30 6.49 3%

Update 5.56 5.56 0%

Update (missing) 6.57 6.82 4%

Table 3: Overhead of executing operations during rebal-

ancing (parallel).

some virtual machines may have contended for disk ac-

cess with other virtual machines. However, the dataset

was small enough that the database server would be able

to aggressively cache the dataset. MongoDB was used

as the underlying database for each shard. The “normal”

operations were executed with a conventional sharding

algorithm with 3 shards, whereas the “rebalancing” oper-

ations apply the algorithms listed in this article (moving

from 2 shards to 3 shards). No rebalancer was running

during either of these tests. We have enumerated a num-

ber of different cases, including failure cases, to attempt

to discern the impact of performing multiple database op-

erations. Since shards provide the most benefit for con-

current operations, we also include a separate measure of

20 concurrent operations, whereas the default case per-

forms all operations serially. Each test run consists of

100 operations of the specified type. We repeated the

full battery of tests 100 times to reduce the effect of out-

liers and report the average time in each case. We se-

lected python for the client side implementation of the

algorithms specified in this paper, as well as the “nor-

mal” sharded client. We have tuned the python client to

eliminate the effect of garbage collection in the results,

to obtain a test measure free of effects unrelated to the

test (or as near as we could get).

Table 2 presents the overhead involved in executing
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the basic operations while rebalancing is in progress. Ta-

ble 3 lists the same operations where 20 operations are

executed concurrently. The first two columns report the

time, in seconds for 100 operations to be performed. The

last column indicates the overhead of executing the re-

balancing algorithm, based on these measurements. The

two queries listed in the table were only executed once

per test run, and covered a subset of the data loaded dur-

ing the test. In this test run, the overhead of applying the

algorithms in this paper were minimal. Thus the other

operations in the system dominated any overhead intro-

duced by our sharding layer. In some cases the proposed

rebalancing algorithms outperformed the naı̈ve sharding

approach, which we ascribe to some variance in the test

environment.

9 Conclusion

We have described a client side implementation of shard-

ing, with the ability to add shards (or remove shards)

without taking the sharded database offline. The lim-

ited set of operations we support are typical of many

NoSQL and document oriented databases, which means

this approach is applicable to a wide variety of available

database systems which have not necessarily been de-

signed to scale out in this way. Database operations are

ordered based on the destination shard for each opera-

tion, so ordering is achieved with no global clocks. Each

shard is responsible for ordering the operations arriving

at that shard, and the ordering of operations from a client

perspective is easily described in terms of the ordering of

operations at each shard.
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