
Level of Detail for Terrain Geometry Images

Duncan Andrew Keith Mc Roberts
Academy for Information Technology

University of Johannesburg
duncmcrob@gmail.com

Alexandre Hardy
Academy for Information Technology

University of Johannesburg
ahardy@uj.ac.za

Abstract

We consider the rendering of geometry images obtained by parame-
terization of terrain geometry. This technique reduces texture warp-
ing in areas of steep gradient. The selected terrain representation
allows terrain that cannot be represented by a height�eld to be ren-
dered. Finally, we demonstrate that the slightly irregular sampling
can be rendered ef�ciently using modern graphics hardware. We
introduce an ef�cient level of detail algorithm that can be applied
to terrain geometry images or regular terrain.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Geometric algorithms, lan-
guages, and systems. I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms

Keywords: Terrain, geometry, LOD

1 Introduction

Real-time terrain rendering is important for a variety of applica-
tions, such as visualization of geographic data and computer enter-
tainment. It is important to be able to render the terrain with as
much accuracy as possible while maintaining a reasonable frame
rate. Perceived accuracy is not only dependent on the number of
polygons that represent the terrain, but also by how well the poly-
gons approximate the terrain we wish to represent.

In previous work, two main approaches have been followed:

� Terrain is regularly sampled. In other words, only a
heightmap which has been sampled at regular grid positions is
stored. The triangle mesh produced for the terrain is implicit
due to the regular sampling.

� Terrain is irregularly sampled. Usually a high detail
heightmap is processed to produce a mesh with large trian-
gles where the terrain differs little in altitude. The number of
triangles required to reproduce the terrain is decreased, and
so performance should increase. However, the cost to store
each triangle is increased due to the explicitly stored irregular
connectivity.

Our contribution is to provide some of the advantages of triangu-
lated irregular networks to the terrain rendering algorithms based
on regular sampling. To reduce stretching we resample the terrain
at irregular positions, while still maintaining a grid structure (im-
plicit connectivity). The irregular sampling allows the terrain ren-
derer to produce visually pleasing terrain using tiled textures, while
the grid structure allows us to render the terrain ef�ciently. Another

important result of the technique presented, is the ability to render
terrains that cannot be represented by height�elds. Our algorithm
permits caves and overhangs to be represented within the terrain
dataset.

A new level of detail algorithm similar in spirit to the work of
Losasso and Hoppe [Losasso and Hoppe 2004] is presented to allow
the irregular terrain to be rendered ef�ciently. This new algorithm
provides level of detail according to distance from the viewer. De-
tail thus varies in spheres extending away from the viewer. The
algorithm takes the altitude of the viewer into account and provides
smooth transitions between level of detail for both forward move-
ment and change in altitude. The paper proceeds as follows: In sec-
tion 2 we discuss existing real-time terrain rendering algorithms.
In section 3, we present terrain geometry images. In section 4, we
discuss the computation of such a terrain from a given height�eld.
In section 5 we discuss the impact on texturing and rendering and
describe the system we use for rendering the terrain. In section 6
we present our results.

2 Related Work

Quadtrees and bintrees are a popular format for storing regular ter-
rains. We refer the reader to the literature for details regarding
these algorithms. A good overview is provided by Lindstrom and
Pascucci [Lindstrom and Pascucci 2002], Pajarola [Pajarola 2002]
and Luebke [Luebke et al. 2002]. Larsen et al. [Larsen and
Christensen 2003] describe a technique to display regular terrains
with smooth transitions between coarse and �ner detail levels us-
ing commodity hardware. Ulrich [Ulrich 2002] reduces overhead
for storing terrain by storing chunks of height�eld data in a tree
structure. Hoppe et al. created the geometry clipmap, a simple al-
gorithm for rendering multiple levels of detail [Losasso and Hoppe
2004]. This algorithm can be supported almost entirely on the GPU
[Asirvatham and Hoppe 2005].

Schneider et al. [Schneider and Westermann 2006] use a nested
mesh hierarchy to improve the performance of terrain rendering on
modern GPUs. Geometry image warping [Dachsbacher and Stam-
minger 2004] can be used to render terrains by sampling the ter-
rain according to the current view frustum. BDAM [Cignoni et al.
2003] provides a very ef�cient rendering by grouping triangles into
batches that can be rendered by graphics hardware. Quadtin [Pa-
jarola et al. 2002] combines regular triangulated networks stored in
quadtrees with TINs. These TINs are stored in a quadtree and can
be rendered ef�ciently. The sampling is not regular, but some of the
advantages of regular sampling are obtained.

Level of detail for terrain rendering has followed two main ap-
proaches. The �rst approach renders the terrain to a speci�ed er-
ror tolerance. The second class of algorithms is usually simpler
and only uses distance from the viewer to determine level of detail.
The simplicity of the algorithms results in faster execution at the
expense of accuracy. Our algorithm falls into the second class.

(a) (b) (c)

Figure 1: Levels of chunked LOD.

3 Terrain Representation

Most terrain data is represented by a height�eld. This height-
�eld can then be used to build a tree such as that used by
ROAM [Duchaineau et al. 1997] or SOAR [Lindstrom and Pascucci
2001] where each leaf of the tree contains one height value. As a
result, there is a large amount of overhead in these approaches. A
fully balanced tree can avoid much of the overhead involved with
the tree representation, but it is still dif�cult to create ef�cient tri-
angle strips or fans for rendering by graphics hardware. Geome-
try clipmaps [Losasso and Hoppe 2004] and chunked LOD [Ulrich
2002] avoid some of these problems by providing sets of vertices
that can be processed together.

We have decided to follow the approach of chunked LOD. which
leads to a relatively simple level of detail algorithm presented later.
Through the rest of the discussion, we will assume that the height
value (from the height�eld) refers to a distance along they-axis,
and that the two axes de�ning the plane of the terrain are thex and
z-axes.

The Chunked LOD algorithm partitions the terrain height�eld into
several chunks of equal size (usually square). Each chunk will be
stored in a node of a quad-tree. Typically the chunksize may be
32� 32, which means that2048triangles are stored per node. These
chunks form the leaves of the quad-tree. The terrain is then sim-
pli�ed to produce a quarter of the samples representing the same
area. This coarser representation of the terrain is then also parti-
tioned into chunks. Each chunk in the coarser level corresponds
to 4 chunks in the �ner resolution height�eld. The process is re-
peated until only one chunk is left, which is then the root of the
quad-tree. Figure 1 illustrates three levels of the produced tree. For
each element in the chunk a height, normal [Tarini et al. 2000] and
horizontal offset for both thex andz-axes are stored.

In the next section we describe the algorithm used to produce each
chunk in the chunked LOD tree.

4 Terrain Geometry Images

To build the terrain, we need to decide what height values and
offsets to use for each chunk. First we determine the offsets for
the �nest detail level, then we proceed to calculate offsets for the
coarser detail levels. The offset for the �ne detail level will be de-
rived directly from geometry representing the terrain. For the �ne
detail level, a geometry image [Gu et al. 2002] using the approach
of Yoshizawa et al. [Yoshizawa et al. 2004] is created. The geom-
etry image is rectangular and stores horizontal and vertical coordi-
nates for each data element. The geometry image is then converted
to the chunked LOD format.

One coarser sample is produced from four samples in the next
higher detail level. Texture coordinates are implicitly calculated
from the position of the data within the chunk. It is thus neces-
sary to ensure that samples at coarser detail levels correspond to
a speci�c example in �ner detail levels. This should be done in

such a way that no texture coordinates need to be stored. Texture
coordinates obtained through morphing (explained later) must be
suf�cient to ensure that no sliding of the terrain texture is visible.
To ensure that geometry morphing does not produce visible errors,
we have selected the upper left sample for each coarser level. Se-
lecting these nodes ensures that certain vertices in the terrain will
remain stationary during morphing of detail levels. These vertices
are stationary in both position and texture coordinate.

5 Texturing

To present more believable terrain, we apply a texture to each trian-
gle. We choose to use tiled textures to simplify the modeling of the
texture on the terrain. For each chunk in the terrain tree, we assign
one or more textures from a prede�ned set of textures to the chunk.
These textures are applied regularly to the surface. In other words
the texture coordinates are given byu = x

w andv = z
w wherex is

the index in the chunk in the horizontal direction,z is the index in
the chunk in the vertical direction andw is the width of the chunk
in samples.

Textures can be assigned to chunks manually, or textures can be
selected and linearly blended according to some prede�ned criteria
such as altitude and gradient. Our prototypes use blendmaps [Hardy
and Mc Roberts 2006] to blend terrain textures. The advantages of
this technique are illustrated in �gure 2.

Grass Blendmapped Pebbles

Figure 2: Texture blending using blend maps.

6 Level of Detail and Rendering

In this section we provide details of our rendering algorithm to-
gether with a level of detail algorithm that can be applied both to
our terrain model and conventional chunked LOD.

6.1 Indexed Vertices

The regular sampling of the terrain stored in the geometry images
allows us to reuse a single set of indexed vertices to render the ge-
ometry. Each vertex requires a single texture coordinate which is
used to sample the geometry image and retrieve the terrain data.
An added bene�t of using a single set of indexed vertices is that we
can avoid continuously changing the state of the rendering device.
We can set the index buffer and vertex buffer once in the root of the
chunked LOD quad tree to render the entire terrain.

6.2 Overview of LOD

Figure 3 illustrates the level of detail selection process. A number
of bounding circles are created around the camera. Each circle is
labeled with a detail leveli . If a chunk at detail leveli intersects this
bounding volume, then it will subdivide into higher detail chunks.

wi

r i � 1

di

ai

r i

bi

leveli � 1

leveli

leveli +1

Figure 3: Levels of detail around the viewpoint.

6.3 Level of Detail

The chunked LOD tree hasn levels. Level0 contains the root node
(lowest level of detail), and leveln � 1 contains the leaf nodes
(highest level of detail). For many of our calculations we work
in map space, that is the coordinate space of samples within the
highest level of detail. In map space all chunks at a given level have
the same size and are square, and the overall width of the entire
terrain iswl — the size of the root node.

Figure 3 illustrates the notation used in this discussion.wi is the
width of a chunk at leveli wherei 2 Z : 0 � i � n � 1, di is the
diagonal length of a chunk at leveli , ai is the geomorphing interval
of a chunk at leveli , bi is the visibility interval of a chunk at level
i , andr i is the radius at which a chunk in leveli will subdivide to a
higher level of detail (i.e. to leveli + 1). Thegeomorphing interval
(ai) is the distance over which a vertex at leveli morphs completely
from the parent LOD (leveli � 1) to the current LOD (leveli),
and thevisibility interval (bi) is the distance over which LODi
is visible. The widths of the chunks are given byw0 = wl and
wi = wi � 1 � 2, and the diagonal length is given bydi =

p
2� wi .

Let the geomorphing interval be a fractionc of the diagonal length
of a chunk, that isai = di � c. The visibility interval is calculated
asbi = di + ai = di � (1 + c). The visibility intervalbi must be at
least the length of the diagonal of one chunk to ensure that adjacent
chunks differ by no more than 1 level of detail. Otherwise cracks in
the geometry will be evident. The formula forbi guarantees that this
requirement is satis�ed. Now we can calculate the radii at which the
chunks subdivide to their children:

r n � 1 = 0 r n � 2 = bn � 1 r i = bi +1 + r i +1 :

The radius at which leaf nodes subdivide,r n � 1 , is set to0. Leaf
nodes will thus never subdivide as they represent the highest level
of detail. The value0 also simpli�es later calculations. The LOD
selection algorithm is view dependent, but independent of view di-
rection, and is based on distance rather than an error metric.

A chunk is subdivided if a chunk at leveli intersects the circle la-
beledi . One way to compute the intersection, is to compute the
distance between the viewpoint (p c) and the centre of the chunk
(cp), where distance is calculated in thexz-plane. If the distance is
less than or equal tor i + di � 2 then the chunk is split. This formula
simply determines if the bounding circle of the chunk intersects the
circle centered around the viewpoint with radiusr i .

It is important to note that these calculations are done in map space
and not in world space. This means that we are not working with

the actual world space bounding volume centre, but the centre of
the chunk in relation to the entire terrain sample grid. These cen-
ters can be calculated by removing the offsets of the chunks and
projecting the patches onto thexz-plane. It is then trivial to calcu-
latep c . Use of map space centers is essential to avoid cracks and
popping of vertices when subdivision occurs. A problem with this
technique is that detail may not be added where it is needed (i.e.
around the viewpoint) when the patch offsets are large. To ensure
that detail is added around the viewpoint we offset the entire map
space grid relative to the difference between the map space centre
and world space centre of the chunk directly below the viewpoint.
An alternative method is to traverse the quadtree to determine the
closest chunk to the viewer, and computep c relative to the sample
coordinates in the chunk. The value forp c should be linearly inter-
polated to avoid popping when the viewer moves to a new chunk.

Figure 4: Geomorphing between levels of detail. Blue vertices are
in level i � 1 (parent LOD), magenta vertices are interpolated in
the vertex shader, and red vertices are in leveli (current LOD).

There are only two causes of cracks in the geometry. These are
caused by the quantization of geometry that is shared between ad-
jacent patches (seams), and by differences in level of detail. The
cracks caused by quantization are solved in a later section. The dif-
ference of level of detail is guaranteed to be a difference of no more
than 1 and is addressed by morphing (in the next section).

6.4 Morphing

We wish to morph smoothly between the parent and current chunks
in the quadtree in order to prevent visible popping when there is
a transition between levels of detail. Morphing also ensures that
the vertices at the point where a parent chunk is subdivided into
higher detail chunks coincide so that no cracks appear in the ge-
ometry. In the original chunked LOD algorithm [Ulrich 2002], the
horizontal positions of vertices remain the same and only the ver-
tical component is morphed. Since we are using geometry images
and the vertices of the terrain have horizontal offsets, we need to
take a slightly different approach. For each level of detail each ver-
tex morphs from a speci�c vertex in the parent LOD. This process
is illustrated in �gure 4.

Morphing is done per-vertex and is similar to [Losasso and Hoppe
2004]. It is necessary for at least an entire chunk at leveli to be
displayed while morphed completely to the current LOD. This is
essential since when this chunk reaches a distancer i from the view-
point it will subdivide to the next higher level of detail (leveli + 1).
If all vertices are not completely morphed to the current LOD, pop-
ping of vertices will occur as the patch subdivides.

It is therefore necessary to have ageomorphing intervalover which
a vertex at leveli has to morph completely from the parent LOD
(level i � 1) to the current LOD (leveli). When a chunk at level
i � 1 reaches a distancer i � 1 from the viewpoint, all vertices in this
chunk will have morphed completely to leveli � 1. This chunk
will then subdivide to leveli . At the points exactly before and
after subdivision all vertices will be completely morphed to level
i � 1. This will entirely mask the fact that the vertices are being
split. After subdivision the vertices in the chunk at leveli must now

morph completely from the parent LOD (leveli � 1) to the current
LOD (level i). We use linear blending to control this morphing,
with � = 0 directly after subdividing and� = 1 when the vertex
reaches the end of the geomorphing interval.

For level i , if vd is the 2D distance (in thexz-plane) of the ver-
tex from the viewpoint (in map space), then� = clamp((r i � 1 �
vd)=ai ; 0; 1). vd is the map space distance of the vertex being mor-
phed (i.e. position of the vertex without offsets).

If pf is the �nal position of the vertex,pi � 1 is the vertex in the
parent LOD, andpi is the vertex in the current LOD thenpf =
� � pi + (1 � �) � pi � 1 .

Thesizeof the geomorphing interval is important. For a small in-
terval fewer triangles are rendered and performance is therefore in-
creased. In addition, better use is made of the triangles rendered
since they are morphed to a higher level of detail rapidly. The prob-
lem with a small interval however, is that the morphing becomes
more noticeable. The larger the interval, therefore, the smoother
and less apparent the morphing is to the viewer. In our demo appli-
cation, we found that0:01 � c � 1:00 creates a suf�cient geomor-
phing interval.

6.5 Increasing the Level of Detail

We may wish to increase the level of detail to obtain a more visually
pleasing landscape. This can be achieved easily by scaling thedi

values for each level of detail. Ifs (s � 1) is the scaling factor,
we can setw0 = wl � s.Values for morphing intervals and scaling
values are compared in table 5.

6.6 The Effect of Altitude on LOD Selection

Typically, the higher above the terrain we are the less detail is re-
quired. Therefore we wish to include altitude in the LOD selection
process. Firstly we need to obtain the altitude of the terrain directly
below the viewpoint. This value can be calculated accurately by
sampling the terrain. Since we are working with geometry images,
which are essentially textures, we can �nd the patch at the highest
level of detail (i.e. leaf node) that the viewpoint is above, calcu-
late(u; v) coordinates and sample the texture directly. The correct
(u; v) coordinate for the viewpoint, however, is directly related to
the contents of the geometry image, and can therefore be complex
to calculate.

A more ef�cient method would be to obtain the average altitude of
the patch that the viewpoint is above (in world space). This will
allow us to avoid calculating the(u; v) coordinates and sampling
the geometry images. The patches at the highest level of detail are
suf�ciently small that we will not notice much difference compared
to sampling the geometry images directly. Since terrain altitude
�uctuates rather rapidly as the viewpoint travels, it would be better
to have a gradual change in detail setting. We propose a simple
linear interpolation between altitudes. The altitude calculation need
not be done in map space.

We have been selecting LODs based on circular bounding areas
in 2D. These circles are equivalent to the intersection of bounding
spheres at altitudey = 0 with thexz-plane. If we allow the altitude
of the bounding spheres to change with the altitude of the view-
point, we can compute the size of the bounding circles in relation
to the height of the camera based on the intersection between the
sphere and thexz-plane. The radius of the circle of intersection
with a plane is given byr 0 = r sin � = r � h2=r (see �gure 7).
Using this equation we have a simple means of updating the min-
imum radii based on altitude. Since the altitude of the terrain is
constantly changing as the viewpoint moves, we essentially have a

v

hr

r 0

�

Figure 7: Bounding sphere-plane intersection.

1

2

3

4

5

6
(a) (b)

Figure 8: Seams are eliminated with ribbons.

�oating plane that changes in relation to the height of the terrain
below the camera.

Each level of detail has a maximum altitude at which it will be
rendered. To avoid visible popping with the sphere-plane intersect
technique, we need to morph to the next LOD based on altitude.
The� values are calculated as:

� i =
n

(m i � h)=mi ; if i = n � 1
min((m i � h)=(m i � m i +1); 1); otherwise. (1)

where� i is the altitude morphing value for level of detaili andm i

is the maximum altitude at which level of detaili will be rendered.
The m i values represent that maximum altitude at which a chunk
at LODi will �t into the reduced bounding circle for leveli . m0 =
1:0 and

m i =
q

max(r 0
i
2 � d0

i
2 ; 0:0)

wherer 0
i is the maximum radius at which LODi will be rendered

less the geomorphing interval (r 0
i = r i � 1 � ai), andd0

i = di �
2 is half the diagonal length of a patch at leveli . The � i values
should have the range[0; 1] since we will be using these values to
perform linear interpolation. Themin function prevents the value
from exceeding1:0 in equation 1 . The values will be negative
when h exceedsm i , but when this occurs we will no longer be
rendering LODi . It can be proved that the chunks will always �t
into the intervals created by the modi�ed radii. Figure 6 illustrates
the effect this algorithm has on LOD selection (the viewpoint is
indicated with the small sphere). For these images the bounding
spheres (radii) and morphing interval was set as tight as possible.

6.7 Seams

One of the problems with quantization of geometry images is that
cracks can appear between the chunks in the terrain, as can be seen
in �gure 8. Adjacent chunks duplicate some of the vertices, so that
the chunks correspond precisely at their edges. Since the values in
adjacent chunks are not necessarily quantized in the same way, the
dequantized vertices may not be identical resulting in cracks in the
rendered geometry. Ulrich [Ulrich 2002] discusses several possible
solutions to this problem. Flanges and skirts are unsuitable since
their geometry may pierce the opposite side of the terrain.

We have chosen to use an adaptation of ribbons to �ll the cracks.
Ribbons will not interfere with our algorithm and add no overhead

s = 1 , c = 0 :01 s = 1 , c = 1 :0 s = 5 , c = 0 :01 s = 5 , c = 1 :0

Figure 5: Comparison of size of geomorphing intervals and scaling factors (viewpoint centered around single chunk at the highest LOD).

Figure 6: LOD selection and morphing based on bounding sphere-plane intersection.

as the ribbons can be pre-generated and stored directly in the geom-
etry images. For example, vertices1, 2 and3 of the left chunk in
�gure 8(a) are replaced by vertices4, 5, and6 in �gure 8(b). This
is done by calculating the adjacent vertices between the two chunks
in exactly the same manner (i.e. using the same sequence of calcu-
lations). The ribbons are the �oating point vertices that are added
to a chunk to ensure continuity at chunk boundaries.

6.8 Culling

Culling of entire sub-trees of the quad tree can be done in soft-
ware. The bounding volume of the patch can be used to quickly
cull patches that are not within the view frustum. In order for this to
work correctly, this bounding volume must be calculated in world
space. Regardless of whether we use a bounding sphere or Axis
Aligned Bounding Box (AABB), the volume must encompass both
the relevant parent geometry and current geometry of the patch. It
may happen that the patch is culled when the parent geometry is
being rendered, and if the bounding volume only encompasses the
current geometry we have no guarantee that the patch is actually
eligible for culling. We have the same problem if the bounding
volume only encompasses the relevant parent geometry.

7 Results

The hardware used to measure the frame rate comprised of an Intel
Core 2 processor (2.9 GHz) and an NVIDIA GeForce 8800 GTX
(768 MB of video memory) graphics card. We managed to achieve
the average frame rates listed in table 1 using our method, while
using blend maps [Hardy and Mc Roberts 2006] to texture the ter-
rain. The terrain used to perform this test is displayed in �gure 9.
The dragon is selected because errors in the level of detail selec-
tion are more pronounced. The viewer is close to the surface and
not at the camera position. The colors indicate the level of detail
selected based on the distance to the viewer. Blendmaps requires
four texture accesses per pixel. Texture mapping a single texture is
signi�cantly faster. The high detail model uses larger radii for each
level of detail.

Examples of terrain rendered using our algorithm are shown in �g-
ures 10 and 11. Of particular interest is the ability to model over-

Detail TPF FPS TPS
Low 37; 376 1067 40 Million
High 710; 144 62 44 Million

TPF=triangles per frame FPS=frames per second
TPS=triangles per second

Table 1: Average frame rates.

hangs. Figure 10 and 11 were produced from an initial mesh rep-
resenting the canyon. This mesh was then rendered to a high reso-
lution geometry image with additional noise to provide �ne details.
The resulting geometry image is then preprocessed using our algo-
rithm and rendered in real-time.

Figure 10: A canyon with overhangs

The rendering algorithm can be implemented in both software (on
the CPU) and hardware (on the GPU). We have implemented both
versions. CPU rendering bene�ts from smaller chunks so that fewer
triangles need to be sent to the GPU. For the software version we
usually use chunks of size8 � 8. The size of a preprocessed terrain
of size1025� 1025 is then approximately 8.5Mb. The GPU can
handle much larger chunk sizes quite easily, but we have only tested
chunk sizes of32� 32. In this case the preprocessed terrain is stored
in 6Mb. The entire terrain quadtree is currently stored in memory,
but it is possible to implement out-of-core strategies. The geometry

High detail Low detail

Figure 9: High and low detail models for performance test.

Figure 11: Wireframe view of canyon. Changes in level of detail
are indicated with red arrows.

of each chunk is stored on the GPU as a vertex buffer object (VBO).
The chunks are stored as textures and the vertex shader transforms
the VBO into the terrain geometry using the chunk texture. The
GPU also takes care of morphing, whereas the CPU decides on the
level of detail.

8 Conclusions

This paper applies geometry images to terrain rendering. We have
introduced a new level of detail algorithm that is both compatible
with the new terrain representation and provides seamless transi-
tions between level of detail. This level of detail algorithm can also
be implemented with other terrain rendering algorithms.

References

ASIRVATHAM , A., AND HOPPE, H. 2005. Terrain rendering us-
ing gpu-based geometry clipmaps. InGPU Gems 2, Addison-
Wesley, M. Pharr and R. Fernando, Eds., 27–45.

CIGNONI, P., GANOVELLI , F., GOBBETTI, E., MARTON, F.,
PONCHIO, F., AND SCOPIGNO, R. 2003. BDAM – batched
dynamic adaptive meshes for high performance terrain visual-
ization.Computer Graphics Forum 22, 3 (September), 505–514.

DACHSBACHER, C., AND STAMMINGER , M. 2004. Rendering
procedural terrain by geometry image warping.Eurographics
Symposium on Rendering, 103–110.

DUCHAINEAU , M. A., WOLINSKY, M., SIGETI, D. E., MILLER ,
M. C., ALDRICH, C., AND M INEEV-WEINSTEIN, M. B. 1997.
ROAMing terrain: real–time optimally adapting meshes. In
IEEE Visualization, 81–88.

GU, X., GORTLER, S.,AND HOPPE, H. 2002. Geometry images.
Computer Graphics Proceedings (SIGGRAPH 2002), 355–361.

HARDY, A., AND MC ROBERTS, D. A. K. 2006. Blend maps:
Enhanced terrain texturing. InProceedings of SAICSIT 2006,
61–70.

LARSEN, B. D., AND CHRISTENSEN, N. J. 2003. Real–time ter-
rain rendering using smooth hardware optimized level of detail.
Journal of WSCG 11, 2, 282–9. WSCG'2003: 11th International
Conference in Central Europe on Computer Graphics, Visualiza-
tion and Digital Interactive Media.

L INDSTROM, P.,AND PASCUCCI, V. 2001. Visualization of large
terrains made easy. InIEEE Visualization, 363–370, 574.

L INDSTROM, P.,AND PASCUCCI, V. 2002. Terrain simpli�cation
simpli�ed: A general framework for view-dependent out-of-core
visualization.IEEE Transactions on Visualization and Computer
Graphics 8, 3, 239–254.

LOSASSO, F., AND HOPPE, H. 2004. Geometry clipmaps: ter-
rain rendering using nested regular grids.ACM Transactions on
Graphics 23, 3 (August), 769–776.

LUEBKE, D., REDDY, M., COHEN, J., VARSHNEY, A., WATSON,
B., AND HUEBNER, R. 2002.Level of Detail for 3D Graphics.
Morgan-Kaufmann, San Francisco.

PAJAROLA, R., ANTONIJUAN, M., AND LARIO, R. 2002.
QuadTIN: quadtree based triangulated irregular networks. InVIS
'02: Proceedings of the conference on Visualization '02, IEEE
Computer Society, Washington, DC, USA, 395–402.

PAJAROLA, R. 2002. Overview of quadtree-based terrain triangu-
lation and visualization. Tech. Rep. UCI-ICS-02-01, University
of California Irvine.

SCHNEIDER, J., AND WESTERMANN, R. 2006. GPU-friendly
high-quality terrain rendering.Journal of WSCG 14, 1-3.

TARINI , M., CIGNONI, P., ROCCHINI, C., AND SCOPIGNO, R.
2000. Real time, accurate, multi-featured rendering of bump
mapped surfaces.Computer Graphics Forum (Eurographics
2000 Conf. Issue) 19, 3, 119–130.

ULRICH, T. 2002. Rendering Massive Terrains using Chun-
ked Level of Detail Control. SIGGRAPH 2002 Course Notes,
SIGGRAPH-ACM publication, San Antonio, Texas.

YOSHIZAWA, S., BELYAEV, A. G., , AND SEIDEL, H.-P. 2004. A
fast and simple stretch-minimizing mesh parameterization.In-
ternational Conference on Shape Modeling and Applications,
200–208.

